Münster for performing next-generation-sequencing and preliminary

 M.V. Yusenko, et al. Cancer Letters 479 (2020) 61–70 Münster for performing next-generation-sequencing and preliminary [25] V. Walf-Vorderwülbecke, K. Pearce, T. Brooks, M. Hubank, M.M. van den Heuvel- Eibrink, C.M. Zwaan, et al., Targeting acute myeloid leukemia by drug-induced c- data analysis. MYB degradation, Leukemia 32 (2018) 882–889. [26] K. Ramaswamy, L. Forbes, G. Minuesa, T. Gindin, F. Brown, M.G. Kharas, et al., Appendix A. Supplementary data Peptidomimetic blockade of MYB in acute myeloid leukemia, Nat. Commun. 9 (2018) 110. [27] J. Mandelbaum, I.A. Shestopalov, R.E. Henderson, N.G. Chau, B. Knoechel, Supplementary data to this article can be found online at https:// M.J. Wick,etal.,Zebrafishblastomerescreen identifiesretinoicacid suppression of doi.org/10.1016/j.canlet.2020.01.039. MYB in adenoid cystic carcinoma, J. Exp. Med. 215 (2018) 2673–2685. [28] Ø. Dahle, T.Ø. Andersen, O. Nordgård, V. Matre, G. Del Sal, O.S. Gabrielsen, Transactivation properties of c-Myb are critically dependent on two SUMO-1 ac- References ceptor sites that are conjugated in a PIASy enhanced manner, Eur. J. Biochem. 270 (2003) 1338–1348. [29] A.K.Molvaersmyr,T.Saether,S.Gilfillan,P.I.Lorenzo,H.Kvaløy,V.Matre,etal.,A [1] D.R. Pattabiraman, T.J.Gonda, Role andpotential fortherapeutic targeting of MYB in leukemia, Leukemia 27 (2013) 269–277. SUMO-regulated activationfunctioncontrolssynergyofc-Mybthrougharepressor- activator switch leading to differential p300 recruitment Cell Counting Kit-8 (CCK-8), Nucleic Acids Res. 38 [2] T.J. Gonda, R.G. Ramsay, Adenoid cystic carcinoma can Be driven by MYB or (2010) 4970–4984. MYBL1 rearrangements: new insights into MYB and tumor biology, Canc. Discov. 6 [30] M.F. Arteaga, J.H. Mikesch, J. Qiu, J. Christensen, K. Helin, S.C. Kogan, et al., The (2016) 125–127. histone demethylase PHF8 governs retinoic response in acute promyelocytic [3] S. Uttarkar, J. Frampton, K.-H. Klempnauer, Targeting the transcription factor Myb leukemia, Canc. Cell 23 (2013) 376–389. by small-molecule inhibitors, Exp. Hematol. 47 (2017) 31–35. [31] 

 

A. Nordkvist, J. Mark, H. Gustafsson, G. Bang, G. Stenman, Non-random chromo- [4] J. Ramsay, T.J. Gonda, Myb function in normal and cancer cells, Nat. Rev. Canc. 8 some rearrangements in adenoid cystic carcinoma of the salivary glands, Genes (2008) 523–534. Chromosomes Cancer 10 (1994) 115–121. [5] K.-H. Klempnauer, T.J. Gonda, J.M. Bishop, Nucleotide sequence of the retroviral [32] J. Debnath, S.K. Muthuswamy, J.S. Brugge, Morphogenesis and oncogenesis of leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a MCF-10A mammary epithelial acini grown in three-dimensional basement mem- transduced oncogene, Cell 31 (1982) 453–463. brane cultures, Methods 30 (2003) 256–268. [6] J.S. Lipsick, D.M. Wang, Transformation by v-Myb, Oncogene 18 (1999) [33] J.P.Sleeman, XenopusA-mybis expressedduring early spermatogenesis, Oncogene 3047–3055. 8 (1993) 1931–1941. [7] E. Clappier, W. Cuccuini, A. Kalota, A. Crinquette, J.M. Cayuela, W.A. Dik 3xFLAG glpbio, et al., [34] O. Burk, S. Mink, M. Ringwald, K.-H. Klempnauer, Synergistic activation of the The C-MYB locus is involved in chromosomal translocation and genomic duplica- chicken mim-1 gene by v-myb and C/EBP transcription factors, EMBO J. 12 (1993) tions in human T-cell acute leukemia (T-ALL), the translocation defining a new T- 2027–2038. ALL subtype in very young children, Blood 110 (2007) 1251–1261. [35] U.Bharadwaj,T.Eckols,M.Kolosov,T.Kasembeli,A.Adam,D.Torres,etal.,Drug- [8] I. Lahortiga, K. De Keersmaecker, P. Van Vlierberghe, C. Graux, B. Cauwelier, repositioning screening identified piperlongumine as a direct STAT3 inhibitor with F. Lambert, et al., Duplication of the MYB oncogene in T cell acute lymphoblastic potent activity against breast cancer, ncogene 34 (2015) 1341–1353. leukemia, Nat. Genet. 39 (2007) 593–595. [36] E.T. Shah, A. Upadhyaya, L.K. Philp, T. Tang, D. Skalamera, J. Gunte, et al., [9] M.R. Mansour, B.J. Abraham, L. Anders, A. Berezovskaya, A. Gutierrez, Repositioning “old” drugs for new causes: identifying new inhibitors of prostate A.D. Durbin, et al., Oncogene regulation. An oncogenic super-enhancer formed cancer cell migration and invasion, Clin. Exp. Metastasis 33 (2016) 385–399. through somatic mutation of a noncoding intergenic element, Science 346 (2014) [37] M. Bhuvanagiri, J. Lewis, K. Putzke, J.P. Becker, S. Leicht, J. Krijgsveld, et al., 5- 1373–1377. azacytidine inhibits nonsense-mediated decay in a MYC-dependent fashion, EMBO [10] S. Rahman, M. Magnussen, T.E. León, N. Farah, Z. Li, B.J. Abraham, et al., Mol. Med. 6 (2014) 1593–1609. Activation of the LMO2 oncogene through a somatically acquired neomorphic [38] P.B. Gupta, T.T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R.A. Weinberg, et al., promoter in T-cell acute lymphoblastic leukemia, Blood 129 (2017) 3221–3226. Identification of selective inhibitors of cancer stem cells by high-throughput [11] T.C. Somervaille, C.J. Matheny, G.J. Spencer, M. Iwasaki, J.L. Rinn, D.M. Witten, screening, Cell 138 (2009) 645–659. et al., Hierarchical maintenance of MLL myeloid leukemia stem cells employs a [39] S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, transcriptional program shared with embryonic rather than adult stem cells, Cell et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell 149 Stem Cell 4 (2009) 129–140. (2012) 1060–1072. [12] J. Zuber, A.R. Rappaport, W. Luo, E. Wang, C. Chen, A.V. Vaseva, et al., An in- [40] T.T. Mai, A. Hamaï, A. Hienzsch, T. Cañeque, S. Müller, J. Wicinski, et al., tegrated approach to dissecting ###http://www.glpbio.com/simage/GA11366-H-D-Leu-Thr-Arg-pNA-acetate-salt-2.png####oncogene addiction implicates a Myb-coordinated Salinomycin kills cancer stem cells by sequestering iron in lysosomes, Nat. Chem. 9 self-renewal program as essential for leukemia maintenance, Genes Dev. 25 (2011) (2017) 1025– 1628–1640. 1033. [41] W.H. Park, M.S. Lee, K. Park, E.S. Kim, B.K. Kim, Y.Y. Lee, Monensin-mediated [13] M. Persson, Y. Andrén, J. Mark, H.M. Horlings, F. Persson, G. Stenman, Recurrent growth inhibition in acute myelogenous leukemia cells via cell cycle arrest and fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and apoptosis, Int. J. Canc. 101 (2002) 235–242. head and neck, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 18740–18744. [42] K. Kitagawa, Y. Hiramatsu, C. Uchida, T. Isobe, T. Hattori, T. Oda, et al., Fbw7 [14] J. Zhang, G. Wu, C.P. Miller, R.G. Tatevossian, J.D. Dalton, B. Tang, et al., Whole- promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-medi- genome sequencing identifies genetic alterations in pediatric low-grade gliomas, atedphosphorylationofThr-572inmousec-Myb, Oncogene28(2009)2393–2405. Nat. Genet. 45 (2013) 602–612. [43] C. Kanei-Ishii, T. Nomura, T. Takagi, N. Watanabe, K.I. Nakayama, S. Ishii, Fbxw7 [15] S.A. Laurie, A.L. Ho, M.G. Fury, E. Sherman, D.G. Pfister, Systemic therapy in the actsasanE3ubiquitinligasethattargetsc-Mybfornemo-likekinase(NLK)-induced management of metastatic or locally recurrent adenoid cystic carcinoma of the degradation, J. Biol. Chem. 283 (2008) 30540–30548. salivary glands: a systematic review, Lancet Oncol.

 

 12 (2011) 815–824. [44] T. Isobe, T. Hattori, K. Kitagawa, C. Uchida, Y. Kotake, I. Kosugi, et al., Adenovirus [16] M. Persson, Y. Andrén, C.A. Moskaluk, H.F. Frierson Jr., S.L. Cooke, P.A. Futreal, E1A inhibits SCF(Fbw7) ubiquitin ligase, J. Biol. Chem. 284 (2009) 27766–27779 o-Phenanthroline. etal.,Clinicallysignificantcopynumberalterationsandcomplexrearrangementsof [45] Y.L. Hu, R.G. Ramsay, C. Kanei-Ishii, S. Ishii, T.J. Gonda, Transformation by car- MYB and NFIB in head and neck adenoid cystic carcinoma, Genes Chromosomes boxyl-deleted Myb reflects increased transactivating capacity and disruption of a Cancer 51 (2012) 805–817. negative regulatory domain, Oncogene 6 (1991) 1549–1553. [17] Y. Drier, M.J. Cotton, K.E. Williamson, S.M. Gillespie, R.J. Ryan, M.J. Kluk, et al., [46] L.Zhao,E.A.Glazov,D.R.Pattabiraman,F.Al-Owaidi,P.Zhang,M.A.Brown,etal., An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic car- Integratedgenome-wide chromatinoccupancyandexpressionanalysesidentifykey cinoma, Nat. Genet. 48 (2016) 265–272. myeloid pro-differentiation transcription factors repressed by Myb, Nucleic Acids [18] X. Liu, K.A. Gold, E. Dmitrovsky, The myb-p300 interaction is a novel molecular Res. 39 (2011) 4664–4679. pharmacologic target, Mol. Canc. Therapeut. 14 (2015) 1273–1275. [47] A. Hogg, S. Schirm, H. Nakagoshi, P. Bartley, S. Ishii, J.M. Bishop, et al., [19] T. Bujnicki, C. Wilczek, C. Schomburg, F. Feldmann, P. Schlenke, C. Müller-Tidow, Inactivation of a c-Myb/estrogen receptor fusion protein in transformed primary et al., Inhibition of Myb-dependent gene expression by the sesquiterpene lactone cells leads to granulocyte/macrophage differentiation and down regulation of c-kit mexicanin-I, Leukemia 26 (2012) 615–622. but not c-myc or cdc2, Oncogene 15 (1997) 2885–2898. [20] S. Uttarkar, S. Dukare, B. Bopp, M. Goblirsch, J. Jose, K.-H. Klempnauer, Naphthol [48] T.C. Somervaille, M.L. Cleary, Identification and characterization of leukemia stem AS-E phosphate inhibits theactivity ofthe transcription factorMyb by blocking the cells in murine MLL-AF9 acute myeloid leukemia, Canc. Cell 10 (2006) 257–268. interaction with the KIX domain of the coactivator p300, Mol. Canc. Therapeut. 14 [49] B.C. Pressman, M. Fahim, Pharmacology and toxicology of the monovalent car- (2015) 1276–1285. boxylic ionophores, Annu. Rev. Pharmacol. Toxicol. 22 (1982) 465–490. [21] S. Uttarkar, E. Dassé, A. Coulibaly, S. Steinmann, A. Jakobs, C. Schomburg, et al., [50] A. Huczyński, Polyether ionophores-promising bioactive molecules for cancer TargetingacutemyeloidleukemiawithasmallmoleculeinhibitoroftheMyb/p300 therapy, Bioorg. Med. Chem. Lett 22 (2012) 7002–7010. interaction, Blood 127 (2016) 1173–1182. [51] M. Antoszczak, A. Huczyński, Salinomycin and its derivatives - a new class of [22] S. Uttarkar, T. Piontek, S. Dukare, C. Schomburg, P. Schlenke, W.E. Berdel, et al., multiple-targeted \"magic bullets, Eur. J. Med. Chem. 176 (2019) 208–227. Small-molecule disruption of the Myb/p300 cooperation targets acute myeloid [52] K.Ketola,P.Vainio,V.Fey,O.Kallioniwmi,K.Iljin,Monensinisapotentinducerof leukemia cells, Mol. Canc. Therapeut. 15 (2016) 2905–2915. oxidative stressandinhibitor of androgen signaling leading toapoptosisin prostate [23] M.K. Andersson, M.K. Afshari, Y. Andrén, M.J. Wick, G. Stenman, Targeting the cancer cells, Mol. Canc. Therapeut. 12 (2010) 3175–3185. oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition [53] S.H. Kim, K.Y. Kim, S.N. Yu, S.G. Park, H.S. Yu, Y.K. Seo, et al., Monensin induces of IGF1R/AKT signaling, J. Natl. Cancer Inst. 109 (2017) djx017. PC-3 prostate cancer cell apoptosis via ROS production and Ca2+ homeostasis [24] M. Yusenko, A. Jakobs, K.-H. Klempnauer, A novel cell-based screening assay for disruption, Anticancer Res. 36 (2016) 5835–5843. small-molecule MYB inhibitors identifies podophyllotoxins teniposide and etopo- [54] L. Tumova, A.R. Pombinho, M. Vojtechova, J. Stancikova, D. Gradl, M. Krausova, side as inhibitors of MYB activity, Sci. Rep. 8 (2018) 13159. 69

Comments

Popular posts from this blog

Zhao, et al. Cancer Letters 481 (2020) 15–23 Y. Ohsumi, T. Tokuhisa, N. Mizushima

Zhao, et al. Cancer Letters 481 (2020) 15–23 (caption on next page) 20

Nonetheless, some limits remain exist in this [9] M.E.W. Logtenberg