Nonetheless, some limits remain exist in this [9] M.E.W. Logtenberg
X.Zhang,etal. Cancer Letters 481 (2020) 32–44 cell extract. Secondly, our data indicated that SSL6 regulates metabo- [8] P.E. Hughes, S. Caenepeel, L.C. Wu, Targeted therapy and checkpoint im- munotherapycombinationsforthetreatmentofcancer,TrendsImmunol.37(2016) lism in HCC cells. Thirdly, SSL6 sensitizes HCC to SFN by down- 462–476. regulating glycolysis. Nonetheless, some limits remain exist in this [9] M.E.W. Logtenberg, J.H.M. Jansen, M. Raaben, M. Toebes, K. Franke, study. For instant, the effects of other metabolism such as lipid meta- A.M. Brandsma, H.L. Matlung, A. Fauster, Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPalpha axis and a target for cancer immunotherapy, bolism on the SFN sensitivity also should be investigated, which may Mainten. Immune Bal. Eff. Targeted Ther. 25 (2019) 612–619. also provide new effective intervention targets. Whether SSL6 could [10] S. Kaur, S.P. Singh, A.G. Elkahloun, W. Wu, M.S. Abu-Asab, D.D. Roberts, CD47- modulateEMTviareprogramminglipidmetabolismisunknown.Dueto dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells, Matrix Biol. 37 (2014) 49–59. thecriticalroleofCD47intumorimmunity[9],whetherandhowSSL6 [11] X. Liu, Y. Pu, K. Cron, L. Deng, J. Kline, W.A. Frazier, H. Xu, H. Peng, Y.X. Fu, regulates the SFN sensitivity via tumor immunity await further in- M.M. Xu, CD47 blockade triggers T cell-mediated destruction of immunogenic tu- vestigation. In addition, other microbiota-derived proteins binding mors, Nat. Med. 21 (2015) 1209–1215. [12] D.R. Soto-Pantoja, S. Kaur, D.D. Roberts, CD47 signaling pathways controlling CD47orotherimmunecheckpointsshouldbeofinteresttobeexplored. cellular differentiation and responses to stress, Crit. Rev. Biochem. Mol. Biol. 50 Moreimportantly,ifonewouldliketoapplySSL6intheclinicalsetting, (2015) 212–230. several aspects should be considered, including the stage of tumor, the [13] J. Lo, E.Y. Lau, R.H. Ching, B.Y. Cheng, M.K. Ma, I.O. Ng, T.K. Lee, Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its long-term side effect, the immune response and existing health condi- blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice, tion of the patients,etc. Hepatology 62 (2015) 534–545. In summary, overcoming the low sensitivity and high resistance of [14] Y.Huang,Y.Ma,P.Gao,Z.Yao,TargetingCD47:theachievementsandconcernsof HCCcellstoSFNisvitalforimprovingtheefficacyoftargetedtherapy. current studies on cancer immunotherapy, J. Thorac. Dis. 9 (2017) E168–e174. [15] G.H.Y. Lin, V. Chai, V. Lee, K. Dodge, T. Truong, M. Wong, L.D. Johnson, This study elucidated the molecular mechanism of a bacteria-derived E.Linderoth,X.Pang,J.Winston,P.S.Petrova,R.A.Uger,TTI-621(SIRPalphaFc),a protein–SSL6 enhancing SFN sensitivity of HCC cells by inhibiting CD47-blockingcancerimmunotherapeutic,triggersphagocytosisoflymphomacells glycolysisvia blocking CD47 signaling. Our findings provided the mo- by multiple polarized macrophage subsets, PloS One 12 (2017) e0187262. [16] E. Elinav, W.S. Garrett, G. Trinchieri, The cancer microbiome, Nat. Rev. Canc. 19 lecular basis for the use of SSL6 as a microbiota-derived protein that (2019) 371–376. may improve the clinical therapeutic practice of HCC. [17] R.F. Schwabe, C. Jobin, The microbiome and cancer, Nat. Rev. Canc. 13 (2013) 800–812. [18] C.M. Whisner, C. Athena Aktipis, The role of the microbiome in cancer initiation Author contributions and progression: how microbes and cancer cells utilize excess energy and promote one another\'s growth, Curr Nutr Rep 8 (2019) 42–51. Y.L. conceived and supervised the study. X.Z., L.W., Y.L. designed [19] F.S. Hodi, S.J. O\'Day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J.C. Hassel, W. Akerley, A.J. van den the experiments, analyzed data and prepared the manuscript. Y.X., Eertwegh, J. Lutzky, P. Lorigan 3x FLAG molecular weight, J.M. Vaubel, G.P. Linette, D. Hogg, H.Y., Y.C., H.Z., J.L., Y.Z., J.Z., J.W., J.P., L.J., H.S. performed the ex- C.H.Ottensmeier,C.Lebbe,C.Peschel,I.Quirt,J.I.Clark,J.D.Wolchok,J.S.Weber, periments. All authors discussed the results and approved the final J. Tian, M.J. Yellin, G.M. Nichol, A. Hoos, W.J. Urba, Improved survival with ipi- version of the manuscript. limumab in patients with metastatic melanoma, N. Engl. J. Med. 363 (2010) 711–723. [20] S.H.Kim,M.Li,S.Trousil Nocodazole,Y.Zhang,M.PascadiMagliano,K.D.Swanson,B.Zheng, Declaration of competing interest Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activityofPD-1blockadeinmelanoma,J.Invest.Dermatol.137(2017)1740–1748. [21] S. Viaud, F. Saccheri, G. Mignot, T. Yamazaki, R. Daillere, D. Hannani, D.P. Enot, ###http://www.glpbio.com/simage/GA11366-H-D-Leu-Thr-Arg-pNA-acetate-salt-1.png####The authors declare no conflict of interest. C. Pfirschke, C. Engblom, M.J. Pittet, A. Schlitzer, F. Ginhoux, L. Apetoh, E. Chachaty, P.L. Woerther, G. Eberl, M. Berard, C. Ecobichon, D. Clermont, C.Bizet,V.Gaboriau-Routhiau,N.Cerf-Bensussan,P.Opolon,N.Yessaad,E.Vivier, Acknowledgements B. Ryffel, C.O. Elson, J. Dore, G. Kroemer, P. Lepage, I.G. Boneca, F. Ghiringhelli, L. Zitvogel, The intestinal microbiota modulates the anticancer immune effects of This work was supported by the Major International (Regional) cyclophosphamide, Science 342 (2013) 971–976. [22] S. Patyar, R. Joshi, D.S. Byrav, A. Prakash, B. Medhi, B.K. Das, Bacteria in cancer Joint Research Program of National Natural Science Foundation of therapy: a novel experimental strategy, J. Biomed. Sci. 17 (2010) 21. China(No.81920108027)andEntrepreneurship&InnovationProgram [23] K. Yazawa, M. Fujimori, J. Amano, Y. Kano, S. Taniguchi, Bifidobacterium longum for Chongqing Overseas Returnees (No. cx2017016). as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors, Canc. Gene Ther. 7 (2000) 269–274. [24] J.M. Yuk, D.M. Shin, K.S. Song, K. Lim, K.H. Kim, S.H. Lee, J.M. Kim, J.S. Lee, Appendix A. Supplementary data T.H. Paik, J.S. Kim, E.K. Jo, Bacillus calmette-guerin cell wall cytoskeleton en- hances colon cancer radiosensitivity through autophagy, Autophagy 6 (2010) 46–60.
Supplementary data to this article can be found online at https:// [25] S.L.Kominsky,M.Vali,D.Korz,T.G.Gabig, S.A.Weitzman,P.Argani, S.Sukumar, doi.org/10.1016/j.canlet.2020.03.027. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma mediated through tight junction proteins claudin 3 and 4, Am. J. References Pathol. 164 (2004) 1627–1633. [26] J.P. Nougayrede, F. Taieb, J. De Rycke, E. Oswald, Cyclomodulins: bacterial ef- fectors that modulate the eukaryotic cell cycle, Trends Microbiol. 13 (2005) [1] B. Njei, Y.Rotman, I.Ditah,J.K. Lim,Emerging trendsinhepatocellularcarcinoma 103–110. incidence and mortality, Hepatology 61 (2015) 191–199. [27] I. Pastan, Targeted therapy of cancer with recombinant immunotoxins, Biochim. [2] R.L. Siegel, K.D. Miller, Cancer statistics 69 (2019) 7–34 2019. Biophys. Acta 1333 (1997) C1–C6. [3] J. Dawkins, R.M. Webster, The hepatocellular carcinoma market, Nat. Rev. Drug [28] T. Yamada, M. Goto, V. Punj, O. Zaborina, M.L. Chen, K. Kimbara, D. Majumdar, Discov. 18 (2019) 13–14. E. Cunningham, T.K. Das Gupta, A.M. Chakrabarty, Bacterial redox protein azurin, [4] J.M.Llovet,S.Ricci,V.Mazzaferro,P.Hilgard,E.Gane,J.F.Blanc,A.C.deOliveira, tumor suppressor protein p53, and regression ofcancer, Proc. Natl. Acad. Sci. U. S. A. Santoro, J.L. Raoul, A. Forner, M. Schwartz, C. Porta, S. Zeuzem, L. Bolondi, A. 99 (2002) 14098–14103. T.F. Greten, P.R. Galle, J.F. Seitz, I. Borbath, D. Haussinger, T. Giannaris, M. Shan, [29] C. Fevre, J. Bestebroer, M.M. Mebius, C.J. de Haas, J.A. van Strijp, J.R. Fitzgerald, M.Moscovici,D.Voliotis,J.Bruix,Sorafenibinadvancedhepatocellularcarcinoma, P.J. Haas, Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil N. Engl. J. Med. 359 (2008) 378–390. receptors as identified using secretome phage display,
Cell Microbiol. 16 (2014) [5] A.L. Cheng, Y.K. Kang, Z. Chen, C.J. Tsao, S. Qin, J.S. Kim, R. Luo, J. Feng, S. Ye, 1646–1665. T.S. Yang, J. Xu, Y. Sun, H. Liang, J. Liu, J. Wang, W.Y. Tak, H. Pan, K. Burock, [30] E. Sick, A. Boukhari, T. Deramaudt, P. Ronde, B. Bucher, P. Andre, J.P. Gies, J. Zou, D. Voliotis, Z. Guan, Efficacy and safety of sorafenib in patients inthe Asia- K.Takeda,ActivationofCD47receptorscausesproliferationofhumanastrocytoma Pacific region with advanced hepatocellular carcinoma: a phase III randomised, but not normal astrocytes viaan Akt-dependent pathway, Glia 59 (2011) 308–319. double-blind, placebo-controlled trial, Lancet Oncol. 10 (2009) 25–34. [31] M.Sagawa,T.Shimizu,N.Fukushima,Y.Kinoshita,I.Ohizumi,S.Uno,Y.Kikuchi, [6] T.Yau,T.J.Yao,P.Chan,H.Wong,R.Pang,S.T.Fan,R.T.Poon,Thesignificanceof Y. Ikeda, H. Yamada-Okabe, M. Kizaki KX2-391, A new disulfide-linked dimer of a single- early alpha-fetoprotein level changes in predicting clinical and survival benefits in chain antibody fragment against human CD47 induces apoptosis in lymphoid ma- advanced hepatocellular carcinoma patients receiving sorafenib, Oncol. 16 (2011) lignantcellsviathehypoxiainduciblefactor-1alphapathway,Canc.Sci.102(2011) 1270–1279. 1208–1215. [7] M. Feng, W. Jiang, Phagocytosis checkpoints as new targets for cancer im- [32] Y. Li, B. Guo, Q. Xie, D. Ye, D. Zhang, Y. Zhu, H. Chen, B. Zhu, STIM1 mediates munotherapy, Nat. Rev. Canc. 19 (2019) 568–586. hypoxia-driven hepatocarcinogenesis via interaction with HIF-1, Cell Rep. 12 43
Comments
Post a Comment